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Cognitive reserve (CR) has been introduced to explain individual differences in susceptibility to cognitive or
functional impairment in the presence of age or pathology. We developed a deep learning model to quantify the
CR as residual variance in memory performance using the Structural Magnetic Resonance Imaging (sMRI) data

I:II(D;EI from a lifespan healthy cohort. The generalizability of the sMRI-based deep learning model was tested in two
MRI independent healthy and Alzheimer’s cohorts using transfer learning framework.

Structural MRIs were collected from three cohorts: 495 healthy adults (age: 20-80) from RANN, 620 healthy
adults (age: 36-100) from lifespan Human Connectome Project Aging (HCPA), and 941 adults (age: 55-92) from
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Region of interest (ROI)-specific cortical thickness and vol-
ume measures were extracted using the Desikan-Killiany Atlas. CR was quantified by residuals which subtract
the predicted memory from the true memory. Cascade neural network (CNN) models were used to train RANN
dataset for memory prediction. Transfer learning was applied to transfer the T1 imaging-based model from source
domain (RANN) to the target domains (HCPA or ADNI).

The CNN model trained on the RANN dataset exhibited strong linear correlation between true and predicted
memory based on the T1 cortical thickness and volume predictors. In addition, the model generated from healthy
lifespan data (RANN) was able to generalize to an independent healthy lifespan data (HCPA) and older demented
participants (ADNI) across different scanner types. The estimated CR was correlated with CR proxies such edu-
cation and IQ across all three datasets.

The current findings suggest that the transfer learning approach is an effective way to generalize the residual-
based CR estimation. It is applicable to various diseases and may flexibly incorporate different imaging modalities
such as fMRI and PET, making it a promising tool for scientific and clinical purposes.

1. Introduction gression to dementia and maintain quality of life (Zissimopoulos, Crim-

mins, & St Clair, 2014).

Approximately 15-20% of adults aged 65 or older suffer from sig-
nificant cognitive decline resulting in mild cognitive impairment (MCI);
among these, 11.3% adults later develop dementia due to Alzheimer’s
disease (AD) (Association, 2021). With the lack of an effective treatment
strategy, there is a great need to identify factors that can slow the pro-

Cognitive reserve (CR) has been introduced to explain individual dif-
ferences in susceptibility to cognitive or functional impairment in the
presence of age or disease-related brain changes (Stern, 2002). Indi-
viduals with high CR have greater resilience and maintained normal
cognitive function longer when confronted with late-life neuropathol-

ogy. Typical CR proxy measures include years of education (Meng &
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D’Arcy, 2012; Stern et al., 1994), premorbid IQ (Alexander et al., 1997),
occupational achievement, and engagement in cognitively and socially
stimulating activities (Scarmeas & Stern, 2003). These are thought to
protect against functional impairment by promoting the ability to bet-
ter compensate for brain changes. However, qualifying as a proxy for
cognitive reserve does not imply sufficiency for the mechanism proper
since a rigorous test of cognitive-reserve mechanisms requires both
brain and cognitive measures. Proxy measures, while often used in
the past and spoken about interchangeably with cognitive reserve, are
not enough here since their effect on cognition could be fully medi-
ated through brain structure, a clear case where better brain main-
tenance, and not better cognitive reserve, would be at play. An NIH-
funded collaboratory for clarifying research definition for cognitive re-
serve and resilience has brought all this into clear focus over the last 3
years. (https://reserveandresilience.com/). -Moreover, proxy measures
fail to provide the entirety of the construct; the same value of a proxy
variable may reflect different experiences across people. In addition,
most proxy measures only represent static cognitive reserve and can-
not account for possible change over time. Lastly, these measures rely
on the recollection of prior activities, which are an indirect proxy of
CR. (Borenstein, Copenhaver, & Mortimer, 2006; Jones et al., 2011;
Satz, Cole, Hardy, & Rassovsky, 2011). To address these limitations, a
direct measure of CR based on unbiased current information is highly
needed. One popular approach to quantify CR is to measure the residual
variance between predicted cognitive performance based on an individ-
ual’s level of brain status and neuropathology and the actual individual’s
performance (Reed et al., 2010). These residual-based measures offer a
more precise measurement of CR (Bocancea et al., 2021). High-reserve
individuals exhibit higher actual measured cognitive performance than
that predicted.

Structural magnetic resonance imaging (sMRI) has been used as
a measure of the regional brain atrophy underlying cognitive decline
and dementia (Mueller, Schuff, & Weiner, 2006). Previous studies us-
ing the sMRI to calculate the residual variance operational measure of
CR showed promising results in older participants (Reed et al., 2010;
Zahodne et al., 2015; Zahodne et al., 2013). Currently, most research
in cognitive aging has used life-span data (Razlighi, Habeck, Barulli, &
Stern, 2017; Salthouse, 2010; Taylor et al., 2017; Tucker-Drob, 2019).
However, leveraging life-span brain and cognition data in quantifying
cognitive reserve has not been done.

In addition, brain imaging data from multi-sites may have high vari-
ability due to different MRI sequences of different scanners, thus, lim-
iting direct application of a previously trained model to new datasets
acquired from different sites.

Traditional machine learning methods to mitigate the influence of
variability across sites require a balanced sample from each site and
assume the same distribution across training and test datasets. The per-
formance of a predictive model declines when these assumptions are
violated. Transfer learning is a machine learning technique that utilizes
the knowledge gained from one task and applies it to a different but
related task. It is a popular optimization approach that allows rapid
progress or improved performance when modeling the second task. The
sMRI obtained from various sites or scanners may represent similar brain
properties but may exhibit different observational distributions. Thus,
the transfer learning approach may be applied to improve the general-
izability of the sMRI-based residual models.

In this study, we proposed a CR quantification framework that lever-
ages a single-site, large scale lifespan data and uses transfer learning to
handle scanner and site differences. First, to assess whether using lifes-
pan data of healthy individuals, which shows more variability in cog-
nition function, may enable better quantification of the relationship be-
tween sMRI and cognitive performance, we built a deep learning model
to quantify the CR as residual variance in memory performance using
the sMRI data from a local healthy lifespan cohort (CR/RANN). Second,
to test the generalizability of the sMRI-based deep learning model, we
utilized the transfer learning approach to fine-tune the pre-trained deep
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learning model to an independent, healthy lifespan cohort: the Human
Connectome Project-Aging cohort (HCPA). Third, to test whether the
model generated from healthy lifespan data could generalize to older
MCI or demented individuals, we used transfer learning again to fine-
tune the model to fit data from participants in the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI). The ADNI datasets were acquired
from different scanners and under different imaging conditions, so we
could test whether the model is affected by different scanners. To vali-
date our operationalization of CR in all three cohorts, we hypothesized
that the estimated CR would correlate with education and IQ (i.e., a
well-established CR proxy).

2. Method and material
2.1. Participants

CR/RANN: 495 healthy adults (age: 20-80) were drawn from our
ongoing studies at Columbia University Irving Medical Center: The Cog-
nitive Reserve and The Reference Ability Neural Network (CR/RANN)
studies (Stern, 2009; Stern et al., 2014). Demographic characteristics of
these participants are summarized in Table 1.

Subjects were recruited primarily by randomized market mailing. An
initial telephone screening determined whether participants met basic
inclusion criteria (i.e., right-handed, English speaking, no psychiatric or
neurological disorders, and normal or corrected-to-normal vision). Po-
tentially eligible participants were further screened in person with struc-
tured medical and neuropsychological evaluations to ensure that they
had no neurological or psychiatric conditions, cognitive impairment, or
contraindication for MRI scanning. Global cognitive functioning was as-
sessed with the Mattis Dementia Rating Scale (Lucas et al., 1998), on
which a minimum score of 130 was required for retention in the study.
In addition, participants who met diagnostic criteria for MCI were ex-
cluded. The studies were approved by the Internal Review Board of the
College of Physicians and Surgeons of Columbia University. Initially,
561 participants were enrolled to CR/RANN studies, and 532 partici-
pants had memory composite score, and 37 participants (7%) were fur-
ther excluded due to missing T1 images, resulting 495 participants. All
495 images passed QC.

CR/RANN Memory Tasks: all participants performed Selective Re-
minding Task (SRT) (Buschke & Fuld, 1974). Three memory measures
were based on sub-scores of the SRT: the long-term storage sub-score,
continuous long-term retrieval, and the number of words recalled on the
last trial. The z-scores of each of the three measures were computed by
subtracting the sample means followed by dividing by the sample stan-
dard deviation. The composite memory scores were computed as the
average of the three z-scores.

HCPA: 620 healthy participants with available cognitive data (age:
36-100) from the lifespan Human Connectome Project Aging were in-
cluded in this study (Bookheimer et al., 2019). The demographic infor-
mation for the participants was presented in Table 1. HCPA excludes
participants who have been diagnosed and treated for major psychiatric
disorders (e.g., schizophrenia, bipolar disorder) or neurological disor-
ders (e.g., stroke, brain tumors, Parkinson’s Disease). To be included
in the current study, the following measurements have to be available:
1) T1-weighted MRI scans from 3T scanner, 2) years of education and
recent occupation, and 3) Composite episodic memory score.

HCPA Memory Tasks: The cognitive and performance battery in-
cludes episodic memory measured by Picture Sequence Memory Test
and Rey Auditory Verb al Learning Test (RAVLT). The z-scores of each
of the three measures were computed by subtracting the sample means
followed by dividing by the sample standard deviation. The composite
memory scores were computed as the average of the three z-scores.

ADNI: 941 subjects, including 417 normal control (CN), 378 mild
cognitive impairment (MCI), and 146 Alzheimer’s disease (AD), were
included in this study. The demographic information for the participants
is presented in Tables 1 and 2.
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Table 1

Demographic Characteristics in CR/RANN, HCPA, and ADNI Study.

CR/RANN HCPA ADNI P
Total N 495 620 941
Age <0.001
- Mean(SD) 53.42 (16.90) 59.499 (15.171) 72.40 (7.21)
- Median(Q1,Q3) 60.00 (38.00,67.00) 58.04 (46.92,70.98) 72.00 (67.00,77.00)
Sex, n(%) 0.0065
- Female 282 (57%) 358 (57.6%) 474 (50.4%)
- Male 213 (43.0%) 263 (42.4%) 467 (49.6%)
Memory <0.001
- Mean(SD) 0.03(0.94) 0.01 (0.72) 0.45 (0.91)
- Median(Q1,Q3) 0.13(-0.62,0.80) -0.34 (-0.38, 0.37) 0.53 (-0.19,1.12)
Education <0.001
- Mean(SD) 16.20 (2.35) 17.46 (2.19) 16.42 (2.53)
- Median(Q1,Q3) 16.00 (14.00,18.00) 18.00 (16, 19) 16 (15.00,18.00)
1Q NART IQ Nih fluidcogcomp NART IQ 0.512
- N-Miss 5 2 17
- Mean(SD) 117.02 (8.68) 120.85 (139.17) 116.35 (11.23)
- Median(Q1,Q3) 119.20 (111.92, 124.00) 100 (91.00, 108.00) 119.44 (110.76,124.40)
People
- N-Miss 113
- Mean(SD) 4.77 (2.28)
- Median(Q1,Q3) 6.00 (3.00, 6.00)
Data
- N-Miss 113
- Mean(SD) 1.73 (1.44)
- Median(Q1,Q3) 1.00 (1.00, 3.00)
Things
- N-Miss 113
- Mean(SD) 5.40 (2.40)
- Median(Q1,Q3) 7.00 (2.00, 7.00)
Diagnosis, n(%)
CN 495 (100%) 620 (100%) 417 (44.3%)
MCI - - 378 (40.2%)
AD - 146 (15.5%)
Table 2
Demographic Characteristics in ADNI dataset across three scanners.
GE(N=232) Philips (N=172) Siemens (N=537) Total (N=941) p-value
ADNI Memory 0.043
- Mean (SD) 0.38(0.95) 0.36(0.92) 0.52(0.90) 0.45(0.91)
Diagnosis, n(%) 0.034
-CN 99(42.7%) 64(37.2%) 254(47.3%) 417(44.3%)
- MCI 87(37.5%) 77(44.8%) 214(39.9%) 378(40.2%)
-AD 46(19.8%) 31(18.0%) 69(12.8%) 146(15.5%)
Age 0.803
- Mean (SD) 72.62(7.13) 72.50(6.86) 72.26(7.36) 72.40(7.21)
Gender, n(%) 0.307
- Female 109(47.0%) 83(48.3%) 282(52.5%) 474(50.4%)
- Male 123(53.0%) 89(51.7%) 255(47.5%) 467(49.6%)
PT Education 0.665
- Mean (SD) 16.31(2.64) 16.38(2.58) 16.49(2.46) 16.42(2.53)
NART IQ 0.365
- N-Miss 10 5 2 17
- Mean (SD) 115.53 (11.55) 116.05 (11.31) 116.77 (11.07) 116.35 (11.23)
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Detailed inclusion and exclusion criteria for the ADNI study can be
found at adni.loni.usc.edu. To be included in the current study, the fol-
lowing measurements have to be available: 1) T1-weighted MRI scans
from 3T scanner, 2) years of education and recent occupation, and 3)
Composite memory score (Crane et al., 2012). Written informed consent
was obtained from all study participants according to the Declaration of
Helsinki, and Ethical approval for data collection and sharing was given
by the institutional review boards of the participating institutions in the
ADNI.

ADNI Memory Tasks: ADNI memory was measured using modern
psychometric approaches to analyze Rey Auditory Verbal Learning Test
(RAVLT, 2 versions), AD Assessment Schedule — Cognition (ADAS-Cog,
3 versions), Mini-Mental State Examination (MMSE), and Logical Mem-

ory data. The composite scores were computed based on bifactor model
(Crane et al., 2012). The computed data were downloaded from the
ADNI website (UWNPSYCHSUM_03_26_20.csv).

2.2. Image procedures

2.2.1. Neuroimaging data acquisition

CR/RANN: Structural MRI scans were acquired on a 3.0T Philips
Achieva scanner. T1-weighted MPRAGE scan was acquired with a TE/TR
of 3/6.5 ms and Flip Angle of 8°, in-plane resolution of 256 x 256, field
of view of 25.4 x 25.4 cm, and 165-180 slices in axial direction with
slice-thickness/gap of 1/0 mm.
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HCPA: Structural MRI scans were acquired from all sites using
3T Siemens Prisma scanner, and 32-channel Prisma head coil. T1-
weighted images were acquired with 3D multi-echo magnetization pre-
pared rapid gradient echo (MEMPRAGE) at 0.8 mm isotropic resolution
(Harms et al., 2018). Other parameters include: TR/TI = 2500,/1000,
TE = 1.8/3.6/5.4/7.2 ms, flip angle of 8 deg, FOV of 256 x 240 x 166
mm with a matrix size of 320 x 300 x 208 slices, water excitation em-
ployed for fat suppression (to reduce signal from bone marrow and scalp
fat), and up to 30 TRs allowed for motion-induced reacquisition.

ADNI: Structural MRI scans were acquired from all sites using 3T
Philips, GE, and Siemens scanners. Since the acquisition protocols were
different for each scanner, an image normalization step was performed
by the ADNI. The imagining sequence was a 3-dimensional sagittal
part magnetization prepared of rapid gradient-echo (MPRAGE). This se-
quence was repeated consecutively to increase the likelihood of obtain-
ing at least one decent quality of MPRAGE image. Image corrections
involved calibration, geometry distortion, and reduction of the inten-
sity of non-uniformity applied on each image by the ADNI. More de-
tails concerning the sMRI images is available on the ADNI homepage
(http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/).

2.2.2. Neuroimaging data processing

Each subject’s structural T1 scan was reconstructed using
FreeSurfer v7.1.1 (http://surfer.nmr.mgh.harvard.edu/). The accu-
racy of FreeSurfer’s subcortical segmentation and cortical parcellation
(Fischl et al., 2002) has been reported to be comparable to manual
labeling. All T1 images went through an automated quality control
through MRIQC (Esteban et al., 2017). For the multiple available
T1 images at the same visit, we selected the images with the best
quality for further analysis. For all images that passed quality check,
cross-sectional image processing was performed using FreeSurfer Ver-
sion 7.1.1 (https://surfer.nmr.mgh.harvard.edu/). Region of interest
(ROI)-specific cortical thickness and volume measures were extracted
from the automated anatomical parcellation using the Desikan-Killiany
Atlas (Desikan et al., 2006) for cortical and aseg atlas for subcortical
ROIs. To test the robustness of the models (supplementary material),
we also used an alternative Destrieux atlas (Destrieux, Fischl, Dale, &
Halgren, 2010).

2.2.3. Brain memory prediction model

The memory prediction model was trained using the CR/RANN
dataset. An overview of the transfer learning method is presented in
Fig. 1. First, the RANN dataset was split into the training set (70%)
and test set (30%) using a conditionally random method. The distribu-
tions of age and sex in the two sets were statistically identical. Cascade
neural network models with all regional cortical thickness and volume
from FreeSurfer as inputs were used to train the CR/RANN dataset for
memory prediction. The cascade neural network is a feedforward neu-
ral network involving connections from the input and every previous
layer to the subsequent layer (Fig. 2). The advantage of the model is
that it accommodates the nonlinear relationship between input and out-
put. The CNN outperforms the other common classical machine learn-
ing approaches for brain residual-based analysis and is more flexible
and efficient to implement the transfer learning framework than other
approaches. (Chen et al., 2020). The hyperparameters of the model, in-
cluding numbers of hidden layers, numbers of neurons, penalty of reg-
ularization and types of activation function, were optimized through
random search. The loss function of model optimization was specified
as mean square error function optimized using gradient descent algo-
rithm with an adaptive learning rate and constant momentum. A 10-fold
cross-validation procedure was conducted within the training set to es-
timate the memory prediction model performance. To quantify model
performance, metrics including Pearson’s correlation coefficient (rho),
mean absolute error (MAE) and cohen’s f2 between the predicted and
true memory were calculated.
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2.2.4. Transfer learning

To transfer the T1 imaging-based model from source domain (using
CR/RANN) to the target domain (HCPA or ADNI), we first randomly
divided the whole HCPA or ADNI dataset into the tuning pool and test
sets (tuning set 70%, test set 30%). The subset of the tuning pool was
randomly selected to re-train the pre-trained model.

In the refined optimization procedure of the transfer learning, the op-
timal tuning sample, the regularization ratio (0 to 1), the loss function
(i.e. mean square error), and the choice which layers were frozen (if the
layer of the pre-trained model was frozen, the parameters in that layer
were not updated in the fine-tuning process) were tested. The trans-
fer learning process was optimized using an agile optimization process
because it facilitated rapid prototyping and broad searching. After the
tuning procedure, the transferred model was applied to the test set for
model performance evaluation. We compared the performance of trans-
fer learning approach with the transfer learning with cotrain (TLCO),
which is used for re-training the pre-trained memory prediction model
by using a combination of the tuning and training sets with the site
indicator. We optimized the tunning process by adopting an agile opti-
mization method that exploit a time-saving optimizer called scaled con-
jugate gradient (SCG) algorithm for fast optimization and the hyperpa-
rameter settings emulated as those of the training process in the target
domain. We compared the performance of the optimized transfer learn-
ing with tuning procedure with the model applied pre-trained model
without tuning. Since ADNI data was collected from multiple sites and
multiple scanners, for the secondary analysis, we applied the transfer
learning by the scanner manufacturers: GE, Siemens and Philips. The
data in the three target domains were divided in to the tuning-pool
and test sets (Siemens: tuning pool N=377, test set N=160; GE: tuning
pool N=164, test set N=68; Philips: tuning pool N=124, test set N=48).
Then, transfer learning was performed in the same pattern separately
for three datasets. The TLCO method was used to compare the perfor-
mance with transfer learning. TLCO integrated both training set from
source domain and tunning set from target domain to tune the pre-
trained CNN model. The TLCO approach accounts for intersite differ-
ences through statistical variance analysis. It employs statistical models
to regress out site-specific differences by using statistical covariates. This
approach requires the source domain data to be accessible and the data
size from different sites to be balanced. The code of the transfer learn-
ing is available at https://github.com/XiZhu-CU/Transfer-Learning-
Submission.

2.2.5.Quantification. of cognitive reserve

After establishing the memory prediction model, a person’s predicted
memory performance could be obtained. Structural brain features along
with age and sex were included in the model as predictors (Reed et al.,
2010). Race was not included in the model as a predictor because more
than 93% of our targeted sample (ADNI) is non-Hispanic white. The im-
pact of race on the model performance is presented in supplementary
material. In addition, the estimated intracranial volume (eTIV) was ex-
tracted from each subject and used as a predictor. Cognitive reserve was
quantified by residuals which subtract the predicted memory from the
true memory. To validate our brain-based CR quantification, we per-
formed correlation analyses between the residuals and several proxies
of CR including education, occupation and IQ. For CR/RANN and ADNI,
we used National Adult Reading Test (NART) IQ, which reflects the crys-
tallized intelligence. Occupational attainment variables (data, people,
things) reflect the specific demands of an occupation. All CR/RANN
and ADNI findings were corrected for multiple comparison at p<0.01
(5 measures: education, IQ, data, people, things). Similarly, for HCPA,
the NIH Toolbox was administrated provided the Crystallized composite
scores which reflects the intelligence. The Crystallized Composite score
is derived from performance on the Reading Recognition and the Pic-
ture Vocabulary tasks (Heaton et al., 2014). The HCPA findings were
corrected for multiple comparison at p<0.025 (2 measures: education,
and I1Q).
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Fig. 1. Overview of transfer learning methods.

3. Results
3.1. Demographic characteristics

Demographic and clinical characteristics are presented in Table 1.
All three datasets significantly differed in age, sex, and education. Par-
ticipants were older in ADNI compared with CR/RANN and HCPA. Edu-
cation was higher in HCPA subjects, compared with CR/RANN or ADNI.
IQ was not significantly different between CR/CRNN and ADNIL

3.2. Training memory prediction modeling in the CR/RANN dataset

The cascade neural network model (Fig. 2) using 10-fold cross-
validation on the CR/RANN training set demonstrated significant lin-
ear correlation between true and predicted memory based on the cho-
sen T1 cortical thickness and volume predictors for both training set
(rho=0.6076, MAE=0.5856, cohen’s f2=0.58) and independent test set
(rho=0.3886, MAE=0.6980, cohen’s f2=0.18) (Fig. 3). After random
search, the model performance improved in training set (rho=0.5578,
MAE=0.5792, cohen’s f2=0.45) and test set (rho=0.3963, MAE=0.6888,
cohen’s f2=0.19).

There was significant correlation of NART IQ with residuals for
training set (NART IQ: rho=0.154, p-value =.004, cohen’s f2=0.01).
There was significant correlation between the residuals and both NART
IQ (NART IQ: rho=0.169, p-value =.003, cohen’s f2=0.03) and educa-
tion (rho=0.2069, p-value=0.01, cohen’s f2=0.04) for test set. Residuals
were not associated with data, people or things.

3.2. Transfer learning to HCPA

The best model trained using CR/RANN dataset (pre-trained model)
was used in this analysis. First, we tuned the model using tuning
set from target domain (HCPA). We found linear correlation and low
MAE between true and predicted memory for tuning set (rho=0.4909,
MAE=0.4101, cohen’s f2=0.32) and test set (rho=0.4062, MAE=0.4107,
cohen’s f2=0.20). When we directly applied pre-trained model without
tuning, the performance dropped in test set (rho=0.3099, MAE=0.5358,
cohen’s f2=0.11) (Fig. 4). Second, the transfer learning with cotrain
(TLCO) approach uses both training set from source domain (CR/RANN)
and tunning set from target domain (HCPA) to further tune the pre-
trained model. The TLCO performed comparable with the transfer learn-
ing approach (Tuning set: rho=0.3872, MAE=0.4318, cohen’s f2=0.18;
Test set: tho=0.4474, MAE=0.3867, cohen’s f2=0.25).

There was significant correlation of both IQ and education with
residuals of the transfer learning model for both tuning set (IQ:
rho=0.227, p-value <.001, cohen’s f2=0.05; education: tho=0.255, p-
value=0.0015, cohen’s £2=0.07); IQ: rho=0.3612, p-value <.001, co-
hen’s f2=0.15; education: rho=0.2798, p-value<.001, cohen’s f2=0.09).

3.4. Transfer learning to ADNI

3.4.1. Primary analysis

We found strong linear correlation and low MAE between true
and predicted memory for tuning set (rho=0.7385, MAE=0.4935, co-
hen’s f2=1.2) and test set (tho=0.7117, MAE=0.5435, cohen’s f2=1.03).
When we directly applied the pre-trained model without tuning, perfor-
mance dropped in test set (rho=0.5485, MAE=0.9259, cohen’s f2=0.43)
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Fig. 2. The initial cascade neural network model used to train CR model (top). The cascade neural network is a feedforward neural network involving connections
from the input and every previous layer to the subsequent layer. This network trained using CR/RANN dataset has seven layers (L1 to L7). The number under each
layer represents the number of neurons in that layer. The first layer has a weight coming from the input and each subsequent layer has weight coming from the
inputs with all previous layers. The last layer is the network output, called as output layer. The output layer is also connected directly with the input layer beside
with hidden layer. The hyperparameters of the model, including numbers of hidden layers and neurons, penalty of regularization, and types of activation function,
were determined through random search. The optimized CNN model after random search (bottom) included 5 layers.
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Fig. 3. Scatter plot for true memory (x axis)
against predicted memory (y axis) in CR/RANN
dataset after random search. A) Training set; B)
Test set.
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Fig. 4. Scatter plot for true memory (x axis) against predicted memory (y axis) in HCPA dataset, while applied pretrained model from CR/RANN.
A) Tuning set using HCPA data; B) Test set after tuning using HCPA data; C) Test set if applying the pretrained model directly
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Fig. 5. Scatter plot for true memory (x axis) against predicted memory (y axis) in ADNI dataset, while applied pretrained model from CR/RANN.
A) Tuning set; B) Test set after tuning; C) Test set if applying the pretrained model directly

Table 3

Model performance for ADNI datasets by scanning manufacturers using random searching model.

Manufacturers Tuning set(TL) Test set before tuning (TL) Test set after tuning (TL) Tuning set(TLCO) Test set (TLCO)
Siemens Rho 0.6488 0.4589 0.5909 0.7836 0.5904

MAE 0.5349 0.8938 0.5163 0.5750 0.6244
GE Rho 0.7813 0.5181 0.6558 0.5655 0.4636

MAE 0.4700 0.8461 0.5932 0.6816 0.6731
Philips Rho 0.8264 0.3138 0.5785 0.5039 0.5238

MAE 0.3850 0.9285 0.7179 0.6406 0.6563

*Transfer learning (TL), and the hybrid (TLCO) approaches.
Table 4

(Fig. 5). The TLCO performed comparable with the transfer learning ap-
proach (Tuning set: tho=0.7187, MAE=0.5158, cohen’s f2=1.1; Test set:
rho=0.6684, MAE=0.5967, cohen’s f2=0.81).

There was significant correlation between IQ, education, and residu-
als of the transfer learning model for both tuning set (IQ: rho=0.2025, p-
value < .001, cohen’s f2=0.04; education: rho=0.1698, p-value=0.0032,
cohen’s f2=0.03) and test set (IQ: tho=0.366, p-value < .001, cohen’s
f2=0.15; education: rho=0.255, p-value < .001, cohen’s 2=0.07).

We further assessed the correlation of IQ and education with residu-
als separately within each diagnosis group (CN, MCI and AD). Correla-
tions of NART IQ and education with residuals are presented in Table 4.
Significant correlation between IQ and residuals was found in all three
groups, while the significant correlation between education and residu-
als was found in CN and MCL

3.4.2. Secondary analysis

We found strong linear correlation and low MAE between true
and predicted memory in the Siemens, GE and Philips respectively
for tuning set (Siemens: rho=0.6488, MAE=0.0.5349; GE: rho=0.7813,
MAE=0.4700, cohen’s f2=1.57; Philips: rho=0.8264, MAE=0.3850, co-
hen’s f2=2.15) and test set (Siemens: tho=0.5909, MAE=0.5163, co-
hen’s 2=0.54; GE: rho=0.6558, MAE=0.5932, cohen’s f2=0.75; Philips:
rho=0.5785, MAE=0.7179, cohen’s f2=0.50). Using the transfer learn-
ing approach, the performance of the CR/RANN pre-trained model could
be reproduced in each target domain with a smaller amount of tuning
data (Fig. 6). The transfer learning approach always outperformed the
TLCO. The results are shown in Table 3.

Significant and positive correlations between NART IQ, education
and residuals were demonstrated in both tuning and test sets (Table 5).

4. Discussion

In this study, we built a deep learning model to quantify the CR
as residual variance in memory performance using the sMRI data from
a healthy lifespan cohort (age 20-80). Importantly, our study demon-
strates that the pre-trained model constructed using the healthy lifes-
pan data (CR/RANN) from a single-site and a single sequence was able
to generalize to two target datasets acquired with different age ranges,
imaging protocols, and clinical status. These included healthy lifespan
Human Connectome Project-Aging cohort (HCPA) and older MCI and

Pearson’s correlation coefficient between IQ, education and residuals by
group diagnosis in ADNI dataset.

Group 1Q p-value  Education  p-value
CN Tuning set residuals 0.109 0.063 0.122* 0.036
Test set residuals 0.302** 0.001 0.304** 0.001
MCI Tuning set residuals ~ 0.189** 0.002 0.148* 0.015
Test set residuals 0.245* 0.011 0.112 0.244
AD Tuning set residuals ~ 0.355** 0.001 0.093 0.366
Test set residuals 0.215 0.138 0.003 0.986

demented participants from Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) across different scanner types. By tuning the models with
relatively small sample sizes and the same T1 brain features, optimal
transferred models were obtained with satisfactory prediction perfor-
mance in both target cohorts. The estimated CR was also validated by
showing significant correlation with CR proxies such as education and
IQ across all three datasets.

We found that the cascade neural network (CNN) model trained on
the CR/RANN data demonstrated a linear correlation between true and
predicted memory based on the T1 cortical thickness and volume predic-
tors. The sMRI-based measure of CR was associated with CR the proxy
measures of education and IQ. Previous studies have used sMRI from
older healthy subjects (Sole-Padulles et al., 2009), older MCI, or patients
with AD to quantify CR (van Loenhoud et al., 2017). However, patients
with neurological diseases with aberrant cognition may lead to bias for
the quantification of CR. We first demonstrated that using lifespan data
of healthy individuals, enabled good quantification of cognitive perfor-
mance. It is worth noting that the performance achieved by our model is
also comparable to that of previous studies applying residual approaches
on quantifying CR (Vieira, Pinaya, & Mechelli, 2017).

Second, to test the generalizability of the sMRI-based deep learning
model, this study utilized the transfer learning approach to fine-tune
the pre-trained deep learning model to an independent, healthy lifes-
pan HCPA data. The transfer learning approach is an efficient and stabi-
lized way to generalize the T1 imaging-based memory prediction model.
Compared with the TLCO, the tuning methods with the transfer learn-
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Fig. 6. Scatter plot for true memory (x axis) against predicted memory (y axis) in ADNI dataset by scanner types using random searching models.

Table 5

Pearson’s correlation coefficient between IQ, education and residuals by scanner
types in ADNI dataset.

Manufacturer 1Q p-value  Education  p-value
Siemens Tuning set residuals ~ 0.2364** <.001 0.2171** 0.0020
Test set residuals 0.1933* 0.0143 0.1858* 0.0186
GE Tuning set residuals ~ 0.2700** 0.0085 0.1999* 0.0461
Test set residuals 0.0886 0.4791 0.3130* 0.0094
Philips Tuning set residuals ~ 0.1996* 0.0488 0.2808"* 0.0047
Test set residuals 0.5001** <.001 0.3424** 0.0172

ing approach always provided lower MAE and a stronger correlation
between the actual and predicted memory in all results.

Third, the model not only could generalize from healthy lifespan data
to an independent healthy lifespan HCPA dataset, but also to an older
demented participants from ADNI using transfer learning. Although the
three datasets administrated different tests to assess memory, by tun-
ning the models with relatively small sample size, prediction perfor-
mance of the models were relatively comparable. Moreover, the models
were robust across different scanners. When conducting retrospective
multi-center imaging studies, such as ADNI, or applying models trained
on one site to another, heterogeneous MRI data from different scanner
hardware, and acquisition protocols will pose challenges in the evalu-
ation and generalization of these trained models. Structured programs
aimed at standardizing and harmonizing MRI acquisition in research
settings (Weiner et al., 2017). However, data obtained in these selected
frameworks might not be representative of real-world populations. In

our work, CNN was trained, tested using the CR/RANN dataset, then
using transfer learning to fine-tune and test in another two datasets ob-
tained by different MR protocols and scanners to capture the full spec-
trum of heterogeneity among data and provide a less dataset-specific
approach. Through further training iterations, the pre-trained CNN net-
work adjusted for data bias stemming from the differences in acqui-
sition and reconstruction between different scanners. In fact, our ap-
proach overcomes the caveats of previous work, which obtained data
from single-center datasets leading to a limited reproducibility of find-
ings (Wen et al., 2020).

Interestingly, In the residual-based cognitive reserve (CR) or brain
age gap (BAG) literature, a correlation between residuals and the
outcome (e.g., age or cognition) has been observed (for example,
(Anaturk et al., 2021; Le et al., 2018)). It is still an ongoing investiga-
tion in the cause of remaining correlation with age or cognition in the
residual-based measures. It is potentially due to the choice of the imag-
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ing modality, mis-specified models, and many other unknown causes.
Some studies suggested re-residualizing the outcome (e.g., age, cogni-
tion) to remove the correlation (Le et al., 2018), but it is also criticized
by others (Butler et al., 2021), because it can inflate residual-based mea-
sure’s relative quantity. At present, there are no established and vali-
dated remedies, and it is out of the scope of the current manuscript.

In the current study, we used a standard pipeline to process the raw
MRI image and extracted the cortical thickness and volume measures
from T1-weighed MRIs. Our ROI-based approach shown promising and
robust results for the given sample sizes. Further deep learning stud-
ies with larger sample size may also consider using voxel-wise whole
brain based approach as input. Moreover, despite progress on the in-
terpretability of deep learning, deep neural networks are still consid-
ered, to a large extent, as black boxes, due to the difficulty of inter-
preting their inner networks. For example, even when an model allows
detection of patients from controls with high levels of accuracy, it can
be difficult to establish the specific features that informed the classi-
fication decision (Cruz-Roa, Arevalo Ovalle, Madabhushi, & Gonzalez
Osorio, 2013). However, our focus of this study was to better predict
the memory measures, further studies may develop more interpretable
deep learning models to better understand the underlying neural mech-
anism. Lastly, we only used sMRI to assess the feasibility for CR estima-
tion across three studies. Future studies should consider adding other
MRI modalities, such as, diffusion tensor imaging (DTI), PET, and CSF
biomarkers together with sMRI to improve the power of prediction as
well as the accuracy of the residual in estimating CR.

5. Conclusions

In conclusion, we have shown the general feasibility of using deep
learning to quantify cognitive reserve by leveraging lifespan healthy
data. Our findings showed that brain/cognitive function across lifes-
pan provided good brain-based quantification of CR. Moreover, transfer
learning shows promises for building robust models that can be fine-
tuned and generalized to independent healthy lifespan cohort and in
patients with Alzheimer’s disease, also robust across different scanners
with different acquisition parameters. The residuals (CR) were signifi-
cantly associated with NART IQ and education across different cohorts.
The transfer learning method is applicable to various brain diseases or
CR proxies and may flexibly incorporate different imaging modalities
making it a promising tool for scientific and clinical purposes.
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